<small id="aqee6"><input id="aqee6"></input></small>
  • <li id="aqee6"></li>
    • <abbr id="aqee6"><tbody id="aqee6"></tbody></abbr>
      <strike id="aqee6"><kbd id="aqee6"></kbd></strike>
      • <button id="aqee6"><tbody id="aqee6"></tbody></button>
      • 亚洲精品免费网站,无毒不卡网站在线分享,扒开双腿粉嫩流白浆,男女网站在线观看

        Additive manufacturing and oxidation behavior of SiC-based materials for nuclear applications

        發(fā)布時(shí)間: 2024-06-14 15:37 | 【 【打印】【關(guān)閉】
        SEMINAR
        The State Key Lab of High Performance Ceramics and Superfine Microstructure,
        Shanghai Institute of Ceramics, Chinese Academy of Sciences?
        中? 國? 科? 學(xué)? 院? 上? 海? 硅? 酸? 鹽? 研? 究? 所? 高? 性? 能? 陶? 瓷? 和? 超? 微? 結? 構? 國? 家? 重? 點(diǎn)? 實(shí)? 驗? 室
        ?

        Additive manufacturing and oxidation behavior of SiC-based materials for nuclear applications

        Prof.??Haiming Wen
        Missouri University of Science and Technology
        ?
        時(shí)間:2024年6月17日(星期一)14:00
        地點(diǎn):嘉定園區G樓3(1)會(huì )議室
        ?
        歡迎廣大科研人員和研究生參與討論!
        ?
        聯(lián)系人:楊金山
        報告摘要:

          Given SiC materials’ high specific strength and ability to retain this strength at high temperatures, they are of particular interest for propulsion and energy production applications. SiC has been studied extensively for nuclear energy applications, particularly in high-temperature gas reactor systems. While high-temperature gas reactors use helium as a coolant, in accident scenarios significant amounts of air or water vapor can be introduced into the coolant and reactor core. It is important to understand the oxidation behavior and mechanisms of TRISO particles (especially the SiC coating layer) under these conditions. In this seminar, oxidation studies on SiC in air or water vapor will be introduced. Over the past decade, in part due to the success in developing nuclear-grade SiC/SiC and an interest in enhanced accident tolerance, SiC has been increasingly suggested for use in light water reactor systems. The SiC and its composites used for nuclear applications are traditionally produced by chemical vapor deposition/infiltration. However, the efficiency is low and it is difficult to produce components with complex shapes. In contrast, additive manufacturing may be a good method to produce complexly shaped SiC and composite components with higher efficiency. In this talk, additive manufacturing of SiC and its composites will also be discussed.

        ?
        主講人簡(jiǎn)介:

          溫海明,美國密蘇里科技大學(xué)材料科學(xué)與工程系長(cháng)聘教授,博士生導師,已培養博士生12名。主持數項美國能源部重大項目以及國家科學(xué)基金項目,累計項目經(jīng)費近1000萬(wàn)美元。為美國能源部及國家科學(xué)基金評審專(zhuān)家。于20222023年分別獲得密蘇里科技大學(xué)杰出教學(xué)獎以及杰出科研獎。在核材料及航空材料等結構材料領(lǐng)域(包括金屬,陶瓷及復合材料)取得一系列重要成果。已在國際核心期刊(包括Science Advances, Acta Materialia, Journal of American Ceramic Society, Journal of European Ceramic Society等)發(fā)表論文近90篇,引用次數超過(guò)4500次。本科畢業(yè)于四川大學(xué)。碩士畢業(yè)于中國科學(xué)院上海硅酸鹽研究所,師從中國工程院院士董紹明教授。2012年博士畢業(yè)于美國加利福尼亞大學(xué)戴維斯分校,師從美國工程院院士Enrique Lavernia教授。博士畢業(yè)后在美國西北大學(xué)從事博士后研究?jì)赡?,與美國工程院院士David Seidman教授合作。